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Abstract. We show that the variety of monadic ortholattices is closed un-
der MacNeille and canonical completions. In each case, the completion of
L is obtained by forming an associated dual space X that is a monadic
orthoframe. This is a set with an orthogonality relation and an additional
binary relation satisfying certain conditions. For the MacNeille comple-
tion, X is formed from the non-zero elements of L, and for the canonical
completion, X is formed from the proper filters of L. The corresponding
completion of L is then obtained as the ortholattice of bi-orthogonally
closed subsets of X with an additional operation defined through the
binary relation of X. With the introduction of a suitable topology on
an orthoframe, as was done by Goldblatt and Bimbó, we obtain a dual
adjunction between the categories of monadic ortholattices and monadic
orthospaces. A restriction of this dual adjunction provides a dual equiv-
alence.

Mathematics Subject Classification. 06C15, 06B23 06E15.

Keywords. Monadic ortholattice, MacNeille completion, Canonical com-
pletion, Duality, Orthoframe, Orthogonality space.

1. Introduction

Monadic algebras were introduced by Halmos [8] as an algebraic realization of
the one-variable fragment of first-order logic. A monadic algebra is a Boolean
algebra with an additional unary operation ∃, called a quantifier, whose closed
elements are a Boolean subalgebra. Halmos’ polyadic algebras [8] had a family
of interrelated quantifiers and played the same role for full first-order logic.
At about the same time, Henkin, Monk, and Tarski [10,11] introduced the
closely related cylindric algebras as algebraic models of first-order logic. These
too had a family of quantifiers, related in a somewhat different way than in
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polyadic algebras. They showed that each monadic algebra and each cylindric
algebra can be embedded into a complete, atomic one. These were among the
results that grew into the theory of canonical extensions of Boolean algebras
with operators [12,13]. The approach was to show that the quantifier of a
monadic algebra yields an equivalence relation on its set of ultrafilters, and
the powerset of this relational structure is then a complete atomic monadic
algebra extending the original. Including the Stone topology into this process
yields a duality between monadic algebras and Stone spaces equipped with a
compatible equivalence relation.

An ortholattice (abbrev.: ol) is a bounded lattice with an order-inverting
period two complementation. Amonadic ol is an ortholattice with a quantifier,
a closure operation whose closed elements are a sub-ol. Janowitz [14] first
considered quantifiers on orthomodular lattices, and Harding [9] studied them,
and cylindric ols, for their connections to von Neumann algebras, in particular,
to subfactors. The broad purpose of this note is to conduct a study for monadic
ols similar to that described for monadic algebras. We use a number of tools
for this purpose.

An orthoframe (abbrev.: of) is a set X with an orthogonality relation,
a binary relation ⊥ that is irreflexive and symmetric. Orthoframes are also
commonly called orthosets and orthogonality spaces. Orthogonality relations
are special examples of the polarities described by Birkhoff [2]. It is known
that the bi-orthogonally closed sets of an of form a complete ol. There are
two well-used ways to construct an orthoframe from an ol: with X the set of
non-zero elements of L, which we call MacLaren’s of (see [15]), and with X
the set of proper filters of L, which we call Goldblatt’s of (see [7]).

In [7], Goldblatt introduced a topology on what we call the Goldblatt
frame of an ol L. This has all sets h(a) = {x : a ∈ x} for a ∈ L, and
their set-theoretic complements, as a sub-basis. Goldblatt showed that this
yields a Stone topology, and that the clopen bi-orthogonally closed sets of the
Goldblatt frame form an ol that is isomorphic to L. Bimbó [1] introduced
orthospaces (abbrev.: os) as certain ofs with a Stone topology and order. She
defined morphisms between oss and thought to have produced a duality be-
tween the category of ortholattices and their homomorphisms and the category
of orthospaces and their morphisms. We show that what is produced in [1] is a
dual adjunction and with an additional condition on oss called ortho-sobriety,
a dual equivalence is obtained [4].

Harding [9] defined monadic orthoframes to be ofs with an additional bi-
nary relation satisfying certain conditions. He showed that the bi-orthogonally
closed elements of a monadic of form a monadic ol, and that the MacLaren
of of a monadic ol can be turned into a monadic of whose bi-orthogonally
closed elements contain the original monadic ol as a subalgebra.

In the second section of this note we provide preliminaries. In the third
section we show that for a monadic ol L, the bi-orthogonally closed sets of the
monadic of constructed in [9] give the MacNeille completion of L in the sense
of [6]. Thus, the variety of monadic ols is closed under MacNeille completions,
hence by [6] it is also closed under canonical completions. We next provide a
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similar description of the canonical extension of L via monadic ofs. As a first
step, we show that the bi-orthogonally closed sets of the Goldblatt of of an
ol is its canonical completion. Then we construct from a monadic ol L a
monadic of structure on its Goldblatt of and show that the bi-orthogonally
closed subsets of this monadic of yield the canonical extension of L.

In the fourth section we consider orthospaces. We provide an example
to show that there is not a dual equivalence between ol’s and os’s, and use
the remainder of the section to show that there is a dual adjunction between
these categories. This dual adjunction restricts to a dual equivalence with the
additional condition of ortho-sobriety on an os as was pointed out by Dmitrieva
in [4].

In the final section, we adapt this adjunction to the setting of monadic
orthoframes and call the resulting structures monadic orthospaces. We then
show that there is a dual adjunction between the categories of monadic ols
and monadic os’s and that this provides a dual equivalence when restricted to
the full sub-category of monadic oss consisting of ortho-sober monadic oss.

2. Preliminaries

Definition 2.1. An ortholattice (L,∧,∨,′ , 0, 1) is a bounded lattice with an
order-inverting period two complementation. A monadic ol is an ol with a
quantifier ∃, i.e. a closure operator where the orthocomplement of a closed
element is closed.

For an ol (L,∧,∨,′ , 0, 1) we use L to denote both the ol and its under-
lying set since this will not cause confusion. We let L∗ be the set of non-zero
elements of L and F(L) be the set of proper, non-empty filters of L ordered by
set inclusion. We use letters such as a, b, c, etc. for elements of L and x, y, z, etc.
for elements of F(L).

Definition 2.2. Let L be an ol. For a, b ∈ L∗ set a ⊥ b iff a ≤ b′, and for
x, y ∈ F(L) set x ⊥ y iff there is a ∈ L∗ with a ∈ x and a′ ∈ y.

It is obvious that both relations are irreflexive and symmetric.

Definition 2.3. Call (L∗,⊥) the MacLaren of of L and (F(L),⊥) the Goldblatt
of of L.

For an of (X,⊥) we use X to denote both the of and its underlying set
since this will not cause confusion. For S ⊆ X its orthogonal is S⊥ = {y ∈
X : x ⊥ y for all x ∈ S}, and its bi-orthogonal is S⊥⊥. Call S bi-orthogonally
closed if S = S⊥⊥.

Definition 2.4. Let B(X) be the set of bi-orthogonally closed subsets of an of
X.

It is well-known that this is a complete ol with partial ordering of set
inclusion and with the orthocomplement of S given by S⊥. In this ol meets
are given by intersections, joins by the bi-orthogonal of the union, and the
bounds are the emptyset and X.
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Proposition 2.5. Suppose L is an ol. Then there is an ol embedding g : L →
B(L∗,⊥) with g(a) = {b ∈ L∗ : b ≤ a}, and an ol-embedding h : L →
B(F(L),⊥) with h(a) = {x : a ∈ x}.

It is known [15] that g : L → B(L∗,⊥) is the MacNeille completion of
L. In the next section, we show that h : L → B(F(L),⊥) is the canonical
extension of L [5]. In the following, for a binary relation R on a set X and
A ⊆ X, we denote the relational image of A by R[A] = {y ∈ X : xRy for some
x ∈ A}.

Definition 2.6. A monadic orthoframe is a triple (X,⊥, R) where (X,⊥) is
an of and R is a reflexive, transitive binary relation on X that satisfies
R[R[{x}]⊥] ⊆ R[{x}]⊥ for all x ∈ X.

Thus, a monadic orthoframe is an of with a pre-order R where the or-
thogonal R[{x}]⊥ of a principal pre-order ideal is a pre-order ideal. Partial
orders on ofs were considered in [3]. The following results were established by
Harding in [9].

Proposition 2.7. For X a monadic of, its bi-orthogonally closed subsets B(X)
form a monadic ol under the quantifier ∃A = R[A]⊥⊥.

Proposition 2.8. For L a monadic ol, the relation R on L∗ defined by aRb iff
b ≤ ∃a makes (L∗,⊥, R) a monadic of, and the map g : L → B(L∗,⊥, R) is a
monadic ol embedding.

3. MacNeille and canonical completions

For L a bounded lattice, an n-ary operation f : Ln → L is calledmonotone if in
each coordinate it either preserves or reverses order. Implication of a Heyting
algebra is monotone, and both the quantifier and orthocomplementation of a
monadic ol are monotone. A lattice with additional operations is monotone
if each of its operations is monotone, and a variety of lattices with additional
operations is monotone if each of its members is monotone. There is a theory
of completions of lattices with monotone operations that we describe in the
restricted case of the variety of monadic ols.

For a bounded lattice L, its MacNeille completion is a pair (e, L) where
L is a complete lattice, e : L → L is a lattice embedding, and each element of
L is both a join and a meet of elements of the image of L. For a monadic ol
L, its MacNeille completion is the bounded lattice L with unary operations ′

and ∃ defined by

x
′ =

∧
{e(a′) : e(a) ≤ x}

∃x =
∨

{e(∃a) : e(a) ≤ x}

Proposition 3.1. For L a monadic ol, g : L → B(L∗,⊥, R) is its MacNeille
completion.
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Proof. On the ol level this is well known [15]. It remains to show that for
A ⊆ L∗ bi-orthogonally closed, i.e. for a normal ideal A of L∗, we have

R[A]⊥⊥ =
∨

{R[g(a)]⊥⊥ : a ∈ A}.

Since the join of bi-orthogonally closed sets is given by the closure of their
union, the right side of this expression is equal to (

⋃
{R[g(a)]⊥⊥ : a ∈ A})⊥⊥.

By general principles, this in turn is equal to (
⋃
{R[g(a)] : a ∈ A})⊥⊥, hence

to R[
⋃
{g(a) : a ∈ A}]⊥⊥. But g(a) is the principal ideal generated by a and

A is a normal ideal, so
⋃
{g(a) : a ∈ A} = A. !

Definition 3.2. For a bounded lattice L, its canonical completion is a pair (e, C)
where C is a complete lattice and e : L → C is a bounded lattice embedding
that is dense and compact. Dense means that each element of C is both a join
of meets and a meet of joins of elements of the image of L. Compact means
that if S, T ⊆ L then

∧
e[S] ≤

∨
e[T ] ⇒

∧
e[S′] ≤

∨
e[T ′]

for some finite S′ ⊆ S and T ′ ⊆ T .

Each lattice has up to isomorphism a unique canonical completion, and we
call this the canonical completion, denoted by Lσ. An element of the canonical
completion that is a meet of elements of the image of L is called closed, and the
set of closed elements is K. For a bounded lattice with additional monotone
operations, there are extensions of the operations to the canonical completion.
We describe these for orthocomplementation and a quantifier, where we call
the extensions ′σ and ∃σ, by

x
′σ

=
∧ {∨

{e(a′) : k ≤ e(a)} : k ≤ x and k ∈ K
}
,

∃σx =
∨ {∧

{e(∃a) : k ≤ e(a)} : k ≤ x and k ∈ K
}
.

Proposition 3.3. For L an ol, h : L → B(F(L),⊥) is its canonical extension.

Proof. We recall a construction of the canonical completion of a bounded
lattice L given in [5]. Let I0 and F0 be its sets of non-empty ideals and
non-empty filters, respectively, and define a relation R0 from F0 to I0 by
xR0 u ⇔ x ∩ u ̸= ∅. For A ⊆ F0 and B ⊆ I0 set

Φ0(A) = {u : xR0 u for all x ∈ A},
Ψ0(B) = {x : xR0 u for all u ∈ B}.

Then for G0 = {A : A = Ψ0Φ0(A)} the collection of Galois closed sets of
this polarity, we have that G0 is a complete lattice under set inclusion and
h0 : L → G0 given by h0(a) = {x ∈ F0 : a ∈ x} is a lattice embedding with
(h0,G0) the canonical completion of L.

It is a simple matter to verify that if we repeat this construction using
the sets F and I of proper non-empty filters and ideals, with relation xRu ⇔
x ∩ u ̸= ∅, corresponding maps Φ and Ψ, and resulting complete lattice G =
{A : A = ΨΦ(A)}, then there is an isomorphism α : G0 → G taking A to
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the set A\{L} obtained by removing the unique improper filter L from A. It
follows that the map h : L → G with h(a) = {x ∈ F : a ∈ x} is a lattice
embedding and (h,G) is a canonical completion of L.

We turn now to the case at hand where L is an ol. Note that the set
F of proper non-empty filters of L is exactly the set F(L). Also, for a filter
y of L let y′ = {a′ : a ∈ x}. Note that y′ is a proper non-empty ideal of L
and each such arises from a unique proper, non-empty filter y of L. Further,
for the relation ⊥ on F(L), we have x ⊥ y ⇔ xR y′. It follows that G is equal
to the collection B(F(L),⊥) of biorthogonally closed sets of (F(L),⊥) and
h : L → B(F(L),⊥) is the canonical completion of L as a bounded lattice.

It remains to see that the orthocomplementation of B is the extension ′σ

described above. One notes that by monotonicity arguments, h(a′) = h(a)
′σ

for each a ∈ L. The result follows using the general De Morgan laws and
density of the canonical extension. !

Remark 3.4. It appears that Goldblatt [7, p. 47] claims that if L is a complete
ol, then h maps L isomorphically onto B(F(L),⊥). This is not the case, the
canonical extension of a complete Boolean algebra is not usually an isomor-
phism.

We now consider Goldblatt’s of in the context of a monadic ol.

Proposition 3.5. Let L be a monadic ol and define a binary relation R on its
Goldblatt of by xR y iff ∃[x] ⊆ y. Then X = (F(L),⊥, R) is a monadic of
and h : L → B(X) is the canonical extension of L.

Proof. To show that X is a monadic of we must first show that R is reflexive
and transitive. For reflexivity, let a ∈ ∃[x] so that a = ∃b for some b ∈ x. Since
b ≤ ∃b and x is upward closed, we have ∃b = a ∈ x and therefore xRx. For
transitivity, assume xRy and yRz so that ∃[x] ⊆ y and ∃[y] ⊆ z. Let a ∈ ∃[x]
so that a = ∃b for some b ∈ x. Then ∃b ∈ y and hence ∃∃b ∈ ∃[y] which implies
∃∃b ∈ z. Then ∃∃b = ∃b and a = ∃b so a ∈ z. Therefore ∃[x] ⊆ z and hence
xRz so we conclude R is transitive.

We now show that R satisfies R[R[{x}]⊥] ⊆ R[{x}]⊥ for all x ∈ F(L).
Let z be the filter generated by ∃[x] and note that z is the smallest filter
belonging to R[{x}]. Thus, R[{x}]⊥ = {z}⊥. If y ∈ {z}⊥, then there is b ∈ z
with b′ ∈ y. Since z is the filter generated by ∃[x], there are a1, . . . , an ∈ x
with ∃a1 ∧ · · · ∧ ∃an ≤ b. Set a = a1 ∧ · · · ∧ an. Then a ∈ x and we have
∃a ≤ ∃a1 ∧ · · ·∧ ∃an ≤ b. Thus b′ ≤ (∃a)′ so (∃a)′ belongs to y. It follows that

R[{x}]⊥ = {z}⊥ = {y : (∃a)′ ∈ y for some a ∈ x}.
Suppose y ∈ R[{x}]⊥ and y Rw. Then there is a ∈ x with (∃a)′ ∈ y and
∃[y] ⊆ w. Since L is a monadic ol, we have (∃a)′ = ∃(∃a)′ ∈ w, giving
w ∈ R[{x}]⊥ as required. So X is a monadic of.

For a ∈ L we have that h(a) = {x : a ∈ x}. It follows that R[h(a)] =
{x : ∃a ∈ x}. Indeed, if x ∈ R[h(a)] then y Rx for some y ∈ h(a). But then
a ∈ y and ∃[y] ⊆ x, so ∃a ∈ x. Conversely, if ∃a ∈ x, then ↑a ∈ h(a) and
∃[↑a] ⊆ x, so x ∈ R[h(a)]. It follows that R[h(a)] is bi-orthogonally closed, so
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h(∃a) = R[h(a)] = R[h(a)]⊥⊥ = ∃h(a). So, using B for B(X), we have that
h : L → B is a monadic ol-embedding. We further know that when restricted
to the ol reduct, this is the canonical extension. It remains to show that the
quantifier that we denote ∃R of B is the canonical extension ∃σ of quantifier
of L, as described above.

Let K be the set of closed elements of B, that is, those that are a meet
of elements in the image of h, and for each filter x of L let Kx = {y : x ⊆ y}.
Let S ⊆ L. If the filter x generated by S is proper, we have

∧
h[S] = Kx, and∧

h[S] = ∅ if x is improper. Thus, each non-empty K ∈ K is of the form Kx

for some proper filter x of L, and it is easily seen that this x is unique.
The definition of ∃σ gives

∃σKx =
∧

{h(∃a) : Kx ⊆ h(a)}.

Since Kx ⊆ h(a) iff a ∈ x, ∃σKx is equal to
⋂
{h(∃a) : a ∈ x}, which in

turn is equal to {y : ∃[x] ⊆ y}, and hence is given by R[Kx]. But this set is
bi-orthogonally closed since it is the intersection of bi-orthogonally closed sets,
so ∃σKx = R[Kx]⊥⊥ = ∃RKx.

Suppose that A is any element of B. Then, the definition of ∃σ and the
result just established for closed elements Kx gives

∃σA =
∨

{∃σKx : Kx ≤ A} =
∨

{∃RKx : Kx ≤ A}.

Since ∃R is order preserving, ∃σA ⊆ ∃RA. To see equality, suppose y ∈ R[A].
Then xR y for some x ∈ A. Since A is bi-orthogonally closed, it is an upset
in the poset of proper filters, so Kx ⊆ A. But y ∈ R[Kx] = ∃RKx. Thus
R[A] ⊆

⋃
{∃RKx : Kx ≤ A}. Using the established fact that ∃σKx = ∃RKx

and taking the bi-orthogonal closure of both sides gives ∃RA ≤
∨
{∃σKx :

Kx ≤ A} = ∃σA. !

To conclude this section, we recall that in the classical setting, one asso-
ciates to a monadic algebra (B,∃) a set X with an equivalence relation S on
X. We show that this path can also be taken with a monadic ol.

Definition 3.6. For L a monadic ol, define a relation S on its set F(L) of
proper filters by xS y iff ∃[x] = ∃[y].

Clearly S is an equivalence relation. To examine its properties further,
we use an auxilliary relation ↑ on F(L) where x ↑ y iff x ⊆ y. We do this to
emphasize that the domain of this particular instance of ⊆ is the set F(L) and
feel that this notation improves readability. With this, we then write ↑S for
the composite ↑ ◦ S. So x ↑S z iff there is y with ∃[x] = ∃[y] and y ⊆ z.

Lemma 3.7. R = ↑S.

Proof. Given x, let x̂ be the filter generated by ∃[x] and note that since x is
down-directed, x̂ is the upset generated by ∃[x]. Then xR z iff ∃[x] ⊆ z iff
x̂ ⊆ z. Since ∃[x] = ∃[x̂] it follows that xR z implies x ↑S z. Conversely, if
x ↑S z, there is y with ∃[x] = ∃[y] and y ⊆ z. Then ∃[x] = ∃[y] ⊆ y ⊆ z and so
xR z. !
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Proposition 3.8. Let L be a monadic ol. Then Y = (F(L),⊥, S) is a monadic
of, S is an equivalence relation, and h : L → B(Y ) is the canonical extension
of L.

Proof. Since x ≤ y and x ⊥ z implies y ⊥ z, for any A ⊆ Y we have A⊥ =
(↑A)⊥. Thus S[{x}]⊥ = (↑S[{x}])⊥ = R[{x}]⊥. Then, since S[A] ⊆ R[A] for
any subset A, we have

S[S[{x}]⊥] ⊆ R[R[{x}]⊥] ⊆ R[{x}]⊥ = S[{x}]⊥.
Here, the second containment uses the fact thatX = (F(L),⊥, R) is a monadic
of. This inequality shows that Y is a monadic of, and as noted, S is an
equivalence relation. Since the mapping h does not depend on the choice of R
or S, it is an ol embedding into B(Y ) that provides a canonical extension of
L when considered as a ol. To show that it is a canonical extension of L as a
monadic ol, we show that the quantifiers ∃R and ∃S on B(F(L),⊥) are equal.
But

∃RA = R[A]⊥⊥ = (↑S[A])⊥⊥ = S[A]⊥⊥ = ∃SA.

This completes the proof. !
Our derivation could have been done throughout starting with the rela-

tion S, but it would have been a bit more complicated.

4. Orthospaces

Bimbó [1] placed Goldblatt’s work [7] on the Stone space of a ol in a categorical
setting in an attempt to create a duality between the category OL of ols and
their homomorphisms and what she called the category of orthospaces.

The focus of this section is to show that what is obtained in [1] is a
dual adjunction that gives rise to a dual equivalence when the definition of
orthospaces is appropriately extended.

Definition 4.1. An orthospace (abbrev.: os) (X,⊥,≤, τ) consists of an of with
a partial ordering ≤ and a compact topology τ that satisfies
(1) if x ! y then there is U ∈ C(X) with x ∈ U and y ̸∈ U ,
(2) if x ⊥ z and x ≤ y, then y ⊥ z,
(3) if U ∈ C(X), then U⊥ ∈ C(X),
(4) if x ⊥ y, then there is U ∈ C(X) with x ∈ U and y ∈ U⊥.
Here C(X) is the set of clopen, bi-orthogonally closed subsets of X.

Condition (1) guarantees that every os X is totally-order disconnected
and therefore totally disconnected. Since X is compact by definition, X is a
Stone space.

Lemma 4.2. In any os we have x ≤ y iff y ∈ {x}⊥⊥.

Proof. If x ≤ y then y ∈ {x}⊥⊥ since (2) implies that each bi-orthogonally
closed set is an upset and we always have x ∈ {x}⊥⊥. Conversely, if x ̸≤ y, then
by (1) there is U ∈ C(X) with x ∈ U and y ̸∈ U . Since U is bi-orthogonally
closed and x ∈ U , we have {x}⊥⊥ ⊆ U , hence y ̸∈ {x}⊥⊥. !
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Using this lemma, one can formulate an equivalent definition of an os
that does not involve an ordering. Call (X,⊥, τ) an os′ if (X,⊥) is an of
with a compact topology τ that satisfies (3) and (4) and additionally has
C(X) separate points, that is, it satisfies the following: (1′) if x ̸= y there is
U ∈ C(X) with U ∩ {x, y} containing one element. Clearly if (X,⊥,≤, τ) is an
os, then (X,⊥, τ) is an os′ since (1) implies (1′).

Proposition 4.3. If (X,⊥, τ) is an os′, then setting x ≤ y iff y ∈ {x}⊥⊥, we
have that (X,⊥,≤, τ) is an os.

Proof. It is simple to see that ≤ is reflexive and transitive. If x ̸= y, then by
(1′) there is U that separates them, say x ∈ U and y ̸∈ U . It follows that
{x}⊥⊥ ⊆ U , hence y ̸∈ {x}⊥⊥. So ≤ is anti-symmetric, hence a partial order.
If x ! y, then y ̸∈ {x}⊥⊥. So there is z with x ⊥ z and y ̸⊥ z. By (4) there is
U ∈ C(X) with x ∈ U and z ∈ U⊥. We cannot have y ∈ U since that would
give y ⊥ z, hence y ̸∈ U . This shows that (1) holds for our derived relation ≤.
Suppose x ⊥ z and x ≤ y. Then y ∈ {x}⊥⊥. But z ∈ {x}⊥, so y ⊥ z, giving
(2). !

If we begin with an os′ (X,⊥, τ), then form an os (X,⊥,≤, τ) as above,
then build from it an os′, we obviously return to the original since we have
merely created and then discarded an auxiliary relation ≤. Suppose we start
with an os (X,⊥,≤, τ), and then use the os′ to form a partial ordering. By
Lemma 4.2, we return to our original os. Thus, the notions of os and os′ are
equivalent. We follow Bimbó’s terminology to make it easy to match with her
paper, although the notion of an os′ seems simpler.

Definition 4.4. Let (P,⊥,≤, τ) and (X,⊥,≤, τ) be os’s. A function φ : P → X
is an os morphism if φ is continuous and satisfies
(1) if φ(p) ⊥ φ(q) then p ⊥ q,
(2) if x ̸⊥ φ(p) then there exists q with q ̸⊥ p and φ(q) ∈ {x}⊥⊥.
Let OS be the category of os’s and their morphisms.

For an ol L, Goldblatt [7] considered the topology τ on F(L) having as
a sub-basis all sets h(a), and their set-theoretic complements, for a ∈ L. He
showed that this is a Stone topology, that the clopen bi-orthogonally closed
sets of F(L) form an ol, and that h is an isomorphism from L to the ol of
clopen bi-orthogonally closed sets of F(L). Bimbó showed [1, Lemma 3.4] that
(F(L),⊆,⊥, τ) is an os, and that for any os X, its clopen bi-orthogonally
closed sets C(X) form an ol [1, Lemma 3.3]. So for any ol L we have an os
F(L), and for any os X we have an ol C(X).

Proposition 4.5. These assignments on objects extend to contravariant func-
tors F : OL → OS and C : OS → OL. For f : L → M an ol-homomorphism,
F(f) : F(M) → F(L) is given by F(f) = f−1[ · ] and for φ : P → X an
os-morphism, C(φ) : C(X) → C(P ) is given by C(φ) = φ−1[ · ].

Proof. See [1, Lemmas 3.9 and 3.10] for the proofs. !
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It was shown in [1] that there are a pair of natural transformations h :
1OL → CF and g : 1OS → FC where, for an ol L and os X, the components
of the natural transformations are given by:

hL : L → CF(L) is given by hL(a) = {x : a ∈ x},
gX : X → FC(X) is given by gX(x) = {U : x ∈ U}.

The naturality of g and h is given in [1, Thm. 3.11]. The proof that hL is an
ol-isomorphism is given in [7]. Thus h : 1OL → CF is a natural isomorphism.
In [1, Thm. 3.6], it is claimed that gX is an isomorphism, hence that F and C
provide a dual equivalence between OL and OS. The proof that gX is one-one
is correct, but it need not be onto. The issue with gX being onto was first
pointed out in [4]. Below, we provide an example to show that gX need not be
onto.

Example 4.6. For X = {x, y}, let ⊥ be the relation ̸= of inequality, ≤ be
the relation = of equality, and τ be the discrete topology. Then τ is a Stone
topology on X, ⊥ is irreflexive and symmetric, hence an orthogonality relation
on X, and ≤ is a partial ordering. Moreover, every subset of X is both clopen
and bi-orthogonally closed, so C(X) is the powerset of X and U⊥ is the set-
theoretic complement of U for each U ⊆ X. It is a simple matter to verify
that (X,⊥,≤, τ) is an os. Then C(X) is a 4-element Boolean algebra, since it
is the powerset of the 2-element set X. But a 4-element Boolean algebra has
3 proper filters. So FC(X) is a 3-element os, thus cannot be isomorphic to X.

Definition 4.7. An os X is ortho-sober if each proper filter in the ortholattice
C(X) is equal to {U ∈ C(X) : x ∈ U} for some x ∈ X.

Ortho-sober orthospaces were introduced by Dmitrieva [4], and later con-
sidered by McDonald and Yamamoto [16]. The point is that for the full sub-
category OSOS of OS consisting of ortho-sober orthospaces, F maps OL into
OSOS, and then F and C provide a dual equivalence between OL and OSOS.
We use the remainder of this section to formulate what exists in the approach
of [1] without the introduction of the ortho-sober condition.

Theorem 4.8. The functors F ⊣ C provide an adjunction between OL and OSop.

Proof. For L an ol and X an os we define mappings ( · )− and ( · )+

HomOL(L, C(X)) HomOS(X,F(L))
( · )−

( · )+

by setting for f : L → C(X) and φ : X → F(L)

f−(x) = {a : x ∈ f(a)},
φ+(a) = {x : a ∈ φ(x)}.

Note that f− : X → F(L) is the composite of gX : X → FC(X) and F(f) :
FC(X) → F(L). Indeed, we have

F(f) ◦ gX(x) = F(f)({U : x ∈ U}) = {a : x ∈ f(a)}.
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Note also that φ+ : L → C(X) is the composite of hL : L → CF(L) and
C(φ) : CF(L) → C(X). Indeed, we have

C(φ) ◦ hL(a) = C(φ)({y : a ∈ y}) = {x : a ∈ φ(x)}.
Thus, the maps ( · )− and ( · )+ between hom-sets are well-defined. Also, we
have

f−+(a) = {x : a ∈ f−(x)} = {x : x ∈ f(a)} = f(a),

φ+−(x) = {a : x ∈ φ+(a)} = {a : a ∈ φ(x)} = φ(x).

Thus, for each L,X the maps ( · )− and ( · )+ are mutually inverse bijections
between hom-sets. We require naturality. For naturality in one coordinate, we
must show that if ψ : X ′ → X and α : X → F(L), then (α ◦ ψ)+ = C(ψ) ◦ α+.
For naturality in the other coordinate, we must show that if f : L′ → L and
α : X → F(L), then (F(f) ◦ α)+ = α+ ◦ f . For the former, we have

(C(ψ) ◦ α+)(a) = C(ψ)({x : a ∈ α(x)})
= {x′ : ψ(x′) ∈ {x : a ∈ α(x)}}
= {x′ : a ∈ αψ(x′)}
= (α ◦ ψ)+(a),

and for the latter, we have

(α+ ◦ f)(b) = {x : f(b) ∈ α(x)}
= {x : b ∈ (F(f) ◦ α)(x)}
= (F(f) ◦ α)+(b).

This completes the proof. !

General categorical considerations yield the following.

Corollary 4.9. The category OL is equivalent to OSOSop and OSOSop is a co-
reflective subcategory of OSop.

5. Monadic orthospaces

In this section, we extend the results in the previous section to the setting of
monadic ols.

Definition 5.1. A tuple (X,⊥,≤, R, τ) is a monadic orthospace if (X,⊥,≤, τ) is
an os, (X,⊥, R) is a monadic of, and for each U ∈ C(X) we have R[U ] ∈ C(X).

For a monadic of X, its bi-orthogonally closed sets B(X) form a monadic
ol under the quantifier ∃A = R[A]⊥⊥. It is clear from the definition of a
monadic os that its clopen bi-orthogonally closed sets C(X) form a subalgebra
of B(X), hence form a monadic ol.

Definition 5.2. Let L be a monadic ol, and equip its Goldblatt os (F(L),⊥
,≤, τ) with the relation xRy iff ∃[x] ⊆ y of its Goldblatt of. Call this the
monadic Goldblatt os and denote it FL.
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For a monadic ol L, we have that F(L) is indeed a monadic os. It is
clearly an os and also a monadic of. It remains only to show that if U is a
clopen and bi-orthogonally closed set of F(L), then so is R[U ]. By Goldblatt’s
result, U = h(a) for some a ∈ L. In the proof of Proposition 3.5, we saw that
R[h(a)] = h(∃a), so R[U ] is clopen and bi-orthogonally closed, hence F(L) is
a monadic os.

Proposition 5.3. For L a monadic ol, the map hL : L → CF(L) given by
hL(a) = {x : a ∈ x} is a monadic ol isomorphism.

Proof. We know that hL is an ol isomorphism. By the discussion above, for
a ∈ L we have hL(∃a) = R[hL(a)] = R[hL(a)]⊥⊥ = ∃hL(a) and thus hL is a
homomorphism for ∃. !

Definition 5.4. For monadic os’s X and Y , a map φ : X → Y is a monadic
os morphism if it is an os morphism and R[φ−1[U ]] = φ−1[R[U ]] for each
U ∈ C(Y ).

Proposition 5.5. For X a monadic os, the map gX : X → FC(X) given by
gX(x) = {U : x ∈ U} is a monadic os embedding.

Proof. To aid readability, we write g for gX . It is known that g is an os em-
bedding. The remaining condition for g to be a monadic os morphism involves
several levels. To assist with this, we use the following conventions. Elements
of X are written x, y and R is the additional relation on X. Elements of FC(X)
are filters of C(X) and are written as F . The relation of FC(X) is denoted S.
We must show that for V ∈ CFC(X)

R[g−1[V]] = g−1[S[V]].

Note that by Goldblatt’s result, there is some U0 ∈ C(X) with

V = {F ∈ FC(X) : U0 ∈ F}.

Observe that x ∈ g−1[V] iff g(x) ∈ V, which occurs iff U0 ∈ g(x), hence,
iff x ∈ U0. Thus

R[g−1[V]] = R[U0].

For y ∈ X we have y ∈ g−1[S[V]] iff g(y) ∈ S[V]. This occurs iff there is some
F ∈ V with F S g(y), hence some filter F with U0 ∈ F and ∃C(X)[F ] ⊆ g(y).
But ↑U0, the principal filter of C(X) generated by U0, is the smallest filter
containing U0. So these conditions occur iff ∃C(X)U0 ∈ g(y), and this occurs iff
y ∈ ∃C(X)U0. But we have seen that ∃C(X)U0 = R[U0]. Thus

g−1[S[V]] = R[U0].

This establishes the result. !

Lemma 5.6. The composite of monadic os morphisms is a monadic os mor-
phism.
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Proof. Suppose X,Y,Z are monadic os’s with associated relations R,S, T ,
respectively. Let φ : X → Y and ψ : Y → Z be monadic os morphisms. Then
for W ∈ C(Z) we have that ψ−1[W ] ∈ C(Y ) since ψ is in particular an os
morphism, and then S[ψ−1[W ]] also belongs to C(Y ) since Y is a monadic os.
Then φ−1ψ−1[T [W ]] = φ−1[S[ψ−1[W ]]] = R[φ−1ψ−1[W ]]. !

Let mOL be the category of monadic ols (usually MOL denotes modu-
lar ols) and mOS be the category of monadic oss. For L a monadic ol, its
Goldblatt frame F(L) is a monadic os, and for a monadic os X its clopen
bi-orthogonally closed subsets C(X) form a monadic ol.

Lemma 5.7. For f : L → M an mOL morphism and φ : X → Y an mOS
morphism, f−1 : F(M) → F(L) is an mOS morphism, and φ−1 : C(Y ) →
C(X) is an mOL morphism.

Proof. We first show that ψ = f−1 is an mOS morphism. Since we already
know it is an os morphism, it remains to show that for U ∈ CF(L), we have
R[ψ−1[U ]] = ψ−1[R[U ]]. By Goldblatt’s result, U = hL(a) for some a ∈ L.
Earlier we showed that R[hL(a)] = hL(∃a) and ψ−1[hL(a)] = hM (f(a)). Thus,
we have

R[ψ−1[U ]] = R[hM (f(a))] = hM (∃f(a)) = hM (f(∃a))
= ψ−1[hL(∃a)] = ψ−1[R[U ]].

Since φ : X → Y is an os morphism, φ−1 is an ol homomorphism. We
must show that for U ∈ C(Y ), that φ−1[∃U ] = ∃φ−1[U ]. But U ∈ C(Y ) implies
that R[U ] ∈ C(Y ), and so ∃U = R[U ]⊥⊥ = R[U ]. Therefore, since φ is a mOS
morphism, we have

φ−1[∃U ] = φ−1[R[U ]] = R[φ−1[U ]] = ∃φ−1[U ],

which completes the proof. !

We then have that F and C are contravariant functors between mOL and
mOS. Recall, that for an ol L and os X, we earlier produced mutually inverse
bijections between homsets where f− = F(f) ◦ gX and φ+ = C(φ) ◦ hL.

HomOL(L, C(X)) HomOS(X,F(L))
( · )−

( · )+

If L is an mOL, X an mOS, f is an mOL morphism, and φ an mOS morphism,
then since gX is an mOS morphism, and hL is an mOL morphism, it follows
that f− is an mOS morphism and φ+ is an mOL morphism. Thus, we have
mutually inverse bijections

HommOL(L, C(X)) HommOS(X,F(L))
( · )−

( · )+
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The naturality of these in each coordinate is given by the naturality in the
previous setting. This yields the following.

Theorem 5.8. F ⊣ C is an adjunction between mOL and mOSop.

Recall that an os X is ortho-sober if each proper filter of C(X) is equal
to {U : x ∈ U} for some x ∈ X. This is equivalent to having gX : X → FC(X)
be an isomorphism. The dual adjunction between OL and OS restricts to a
dual equivalence between OL and the full subcategory of ortho-sober oss.

Corollary 5.9. There is a dual equivalence between mOL and the full subcate-
gory OSmOS of mOS consisting of ortho-sober monadic oss.

Corollary 5.10. The category OSmOSop is a co-reflective subcategory of mOSop.
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